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Abstract

This paper presents an algorithm to compute the Markov parameters of a backward-

time observer for a backward-time model from experimental input and output data. The

backward-time observer Markov parameters are decomposed to obtain the backward-time

system Markov parameters (backward-time pulse response samples) for the backward-time

system identification. The identified backward-time system Markov parameters are used

in the Eigensystem Realization Algorithm to identify a backward-time state-space model,

which can be easily converted to the usual forward-time representation. If one reverses time

in the model to be identified, what were damped true system modes become modes with

negative damping, growing as the reversed time increases. On the other hand, the noise

modes in the identification still maintain the property that they are stable. The shift from

positive damping to negative damping of the true system modes allows one to distinguish

these modes from noise modes. Experimental results are given to illustrate when and to

what extent this concept works.

Introduction

Identification is the process of developing or improving a mathematical model of a phys-

ical system using experimental data to describe the input, output and noise relationship. A

tremendous number of system identification techniques are available. Techniques to identify

a model from input and output data typically contain two steps. First, a family of candidate

models is chosen and then the particular member in this family is determined which satis-

factorily describes the observed data based on some error criterion such as minimizing the

measurement residuals due to the input and output noises. One of the most popular models

is ARX model I where AR refers to the autoregressive part (related to output data) and X
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refers to the exogeneouspart (relatedto input data). In particular, the forward-time ARX
model in the time domain is nothing but a linear finite differenceequation describingthat

the current output measurementcanbeestimatedfrom past output and input data. On the

other hand, the backward-timeARX modelmeansthat the currentoutput measurementcan

beestimated by the future output and input data. The ARX coefficientsin the linear finite

differenceequation canbe easilycomputedfrom input and output data.

Insights into physicalmechanismsof the systemcan usuallybe incorporatedmoreeasily

into state-spacemodelsthan the APJ( modelsjust describedabove. In the state-spaceform

the relationship betweenthe input, output, and noisedata is written as a systemof first-
order differential equationsusinganauxiliary state vector. Note that it isdifficult to directly

compute a state-spacemodel from input and output data. The state-spacemodelscan be

constructed directly from the ARX coefficientsusing standard canonical forms including

companionsform, controllable/observablecanonicalform, Jordan canonicalform, etc. One

common problem is that an estimate of systemorder is required to be known a priori.
Sincethe model order is generallyunknown in practice, a trial and error process is required

to find the best model order. In general, it results in a considerably overspecified model

order particularly when the data contains considerable noise. Overspecification of the model

order increases accuracy but discrimination of the system and computational portions of

the models can be difficult. Recently, novel techniques referred to as back'ward methods

using the backward-time model have been introduced in Refs. 2 and 3 to aid in the mode

discrimination process. If one reverses time in the model to be identified, the damped true

system modes become unstable, growing as tile reversed time increases. On the other hand,

the noise modes in the identification still maintain the property that they are stable. This

is intuitively reasonable. If the data set is sufficiently long, an unstable noise mode would

contribute to the pulse response data that grow unbounded as the time step in the data set

increases. This is inconsistent with the expected contribution of noise in data. The shift from

positive damping to negative damping of the true system modes allows one to distinguish

these modes from noise modes.

Aside from the problems of model order using standard canonical forms, numerical sensi-

tivity is known to result from using the state space model whose elements are taken directly

from the ARX model coefficients. The interested reader is directed to Refs. 4-6 for discus-

sions of numerical sensitivities of companion forms, controllable/observable canonical forms,

etc. The backward method introduced in this paper avoids numerically sensitive canonical

forms by constructing a state-space realization from backward-time Markov parameters. This
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methodusesthe observer-basedapproacheswhich are developed in Refs. 7-10 and referred to

as the Observer/Kalman filter identification (OKID) method. The primary step is to use an

observer to produce the backward-time Markov parameters (backward-time pulse response

samples) from input and output data. The backward-time Markov parameters are then used

in the Eigensystem Realization Algorithm (ERA) 11-12 to construct a backward-time state-

space model for its modal parameter estimation. As a by-product, a backward-time observer

is obtained to be used for noise characterization. The identified backward-time state space

model can be easily converted to the usual (forward-time) state-space representation.

This paper starts by writing the relationship between the input and output histories in

terms of the deterministic backward-time ARX model. Formulations are derived to compute

the system backward-time Markov parameters and the backward-time observer gain from the

backward-time ARX coefficients. The second part of this paper is to extend the deterministic

case to the stochastic case with process and measurement noises. This will result in a

backward-time ARMAX model where MA refers to the moving average part which is related

to the residual of the measurement equation. The ARMAX model describes not only the

deterministic but also the stochastic components of the response. The relationship between

the backward-time observer and the Kalman filter is discussed. Experimental results in

comparison with the forward OKID method r-l° are given to illustrate the validity of the

backward method presented in this paper. The experimental results are obtained from a

10-bay truss structure having two accelerometers and two thrusters.

Deterministic Backward-time ARX Model

Consider a discrete multivariable linear system described by the state equation

x(k + 1)= mx(k) + Su(k)

and the measurement equation

y(k) = Cx(k) + Du(k)

(I)

(2)

where x(k) E R _, y(k) E R r', u(k) E R", and k is the time index. Premultiplying Eq. (1)

by A -1 and solving for x(k) yield

(3)x(k) = A-Ix(k+ 1)-A-1Bu(k)

3



This is a backward-time model in the sensethat the current state x(k) is determined by

the future state x(k + 1) and the current input u(k). It is not a natual model and cannot

be used in real time implementation. However, it can be very useful for modal parameter

identification of a system model, which will be shown in the following. Substracting and

adding the term Gy(k + l) in Eq. (3) produces

x(k) = A-lx(k + l)- A-IBu(k) +Gy(k + l)-Gy(k + l)

= A-_x(k + 1) - A-1Bu(k) + GCx(k + 1) + GDu(k + 1) - Gy(k + 1)

_(k) 1
= (A-'+GO)x(k+l)+[-A-IB GD -G] u(k+l)] (4)

v(k + 1)j

This is a backward-time observer model which observes the current state x(k) using the

fllture state x(k + 1) and the observer gain G multiplied by a combination of inputs and

outputs. The advantage of using the observer model instead of the original backward-time

model is that the observer gain can be chosen so that the observer state matrix (A -1 + GC)

is as stable as desired. Define

A =

Using the above definition, Eq. (4) can be shortened as

z(k) = Az(k + 1) + [_(k)

u(k) 1
u(k + 1)
v(k+ 1)

(5)

(6)

Equation (6) looks identical to a typical linear discrete model except that it is backward

in time. From Eqs. (2) and (6), the mapping between the input and output data can be

established by the following equation

(7)y(k) = C/_iPx(]_ + p) + C,_ p-1Bv(_ _ 7) - 1) + ... + CBO(k) + Du(k)

This equation computes an estimate of the current measurement y(k) using the p-step-future

state x(k+p), current and future inputs, u(k),..., u(k+p), and future output measurements,

y(k + 1),y(k + 2),..., y(k + p). Let G and p be chosen such that

(8)A _=(A-'+GC) _=0; i_>p

Physically, it means that the gain matrix G makes the backward-time observer state matrix

A -_ + GC becomes deadbeat after p steps. It implies that the current output measurement
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canbe fully estimated by the future p inputs and outputs (see Eq. (7)) without any future

state involved. The smaller the p is the shorter the number of the future inputs and outputs

is needed to estimate the current measurement. However, there is a lower limit for the

integer p which is related to the order of the system and the number of outputs. For the

single-output observable case, there always exists a gain G which makes the state matrix

A -l + GC becomes deadbeat as long as the chosen integer p is greater than or equal to the

order of the system matrix A. For the multiple-output observable case, if p is chosen such

that the product of p and the number of outputs is greater than or equal to the system order,

a gain G always exists to make the observer state matrix A -1 + GC becomes deadbeat after

p steps. The reader is directed to Ref. 10 for the proof of the above statements.

Substitution of/_ and v defined in Eq. (5) into Eq. (7) yields

y(k) + Cay(k + 1) + ... + CAV-lay(k + p)

= (D + C[_)u(k) + (CA[_ + CaD)u(k + 1) + ...

+(CAP-I[3 + CfF-2GD)u(k + p - 1) + CAp-IGDu(k + p) (9)

or

y(k) + o_ly(k + 1) + ... + o_py(k + p)

= _u(k) + 31u(k + 1) + ... + &u(k + p) (lO)

where
oti= C_ti-IG; i = 1,2, ...,p

3ib = C ]t*9 + CA_-_GD; i = 1,2, ...,p - 1 (11)

& = D + C[3; 3p = CflP-IGD

Equation (10) is known to be a backward-time ARX model. At this moment, the relationship

between the backward-time state space model, Eq. (3), and the backward-time ARX model

becomes clear. Given the system matrices A, B, C, D, and the observer gain matrix G, the

backward-time ARX mdel, Eq. (10), can be easily derived by using Eq. (11). On the other

hand, if the coefficients c_i and/3_ (i = 1,2,..., p) of the ARX model are directly computed

from the input and output data, are the system matrices A, B, C, D realizable from these

coefficients? This question will be answered in the following.
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Let Eq. (10) be rewritten in the following matrix form

_(k)=[_o {Z,-_,} {Z,-,-a,-,} ... {_,-_,}1

Now define

y = [y(0) y(1) y(2).., y(t'-p)];

Y = [3o {tip-a,} {tip-1 -ap_l) ... {ill

V =

u(k)

u(k + p)V(k+ p) }

u(k +p- 1)y(k+p 11}

{u(k:_ 11y(k+ 11}

(12)

u(0) u(1) ... u(g- p)

{ u(p)} {u(p+ l) u(g)v(v) y(p+l) } "'" {y(_)}
[ u(p- 1) [ u(p) u(e- 1)1)} } { 1)}[ - t y(p) y(e-

: : ".. :

f u('l) u('2) u(g-p+ 1)

I

(13)

The matrix Y of dimension m x [r + (m + r)p] contains the unknown ARX coefficients ai and

/3_ (i = 1,2,... ,p), whereas the matrices y of dimension m x (g - p + 1) and V of dimension

[r + (m + r)p] x (g - p + 1) contain the input and output data. Making use of Eq. (12) and

the definition of Eq. (13) produces

which yields

where t means the pseudo-inverse of V.

y = YV (14)

Y=yV t (15)

Equation (15) solves for the unknown ARX co-

efficients a_ and _ (i = 1, 2,...,p).

matrices A, B, C, D can be constructed as follows.

Using Eq. (11) yields

D = -a_'l&;

CB = 3o-V;

CAi[_ = /3_ - aiD

Having computed these ARX coefficients, the system

(16)
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From Eqs. (11) and (16),one obtains the following Markov-like parameter sequences

Yo= [ca cAa ... ]

and

(17)

Y_=[D CB CAb ... CAP-'B] (18)

All system information is embedded in the sequences Yo and Y,. The next step is to extract

the system Markov parameters from the two sequences for the identification of the system

matrices A, B, C, D. By simply applying the same approach as in Ref. 10, the sequences

defined in Eqs. (17) and (18) can be decoupled to produce the following combined Markov

parameters,

Y_=[D C[B G] CA-'[.B G] ... cm-k[b a]] (19)

where k is an arbitrary integer which can be as large as desired. The sequence Y¢ is defined as

the combined Markov parameters to describe the input-output map of a backward-time ob-

server model as defined in Eqs. (4) in combination with the measurement equation, Eq. (3).

The combined Markov paranmter sequence can be used in conjunction with the ERA algo-

rithm in Ref. 11 or 12 to realize a set of matrices

[A-' b C D a]

Using the relationship/} = -A-IB, the forward-time representation can be computed

[AB C D G]

with B = -A/}. The operator "inverse", A -1, shifts all the eigenvalues of A from inside the

unit circle to outside the unit circle. In other words, the stable system modes will become

unstable modes by the inverse operator.

Stochastic Backward-time ARMAX Model

Equation (11) is a deterministic backward-time ARX model representing the state space

model given in Eqs. (1) and (2). In the following development, an extension to the case with

process and measurement noises will be made. This will result in a backward-time ARMAX

model that describes not only the deterministic but also the stochastic components of the

response. Consider the system with process and measurement noises given below,

x(k + 1) = Ax(k) + Su(k) + wl(k) (20)
y(k) = Cx(k) + Du(k) + w_(k)
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where x(i) • R '_, y(i) • R", u(i) • W. Ideally, the process noise wt(k) and measurement

noise w2(k) are two uncorrelated zero-mean stationary white noise processes. From Kalman

filter theory, there exists a Kalman filter gain K such that the system given in Eq. (20) is

equivalent to

_(k + 1) = A_(k) + Bu(k) + ge(k)

y(k) = C:_(k) + nu(k) + e(k) (21)

where e(k) is a residual sequence which is white and uncorrelated with the measurements,

and whose Euclidean norm is minimized. To derive a backward-time model for the above

system, premultiply Eq. (21) by A -1 and solve for _(k),

:_(k) = A-'&(k + 1)- A-'Bu(k)- A-'Ke(k) (22)

= A-l&(k + 1) - A-IBu(k) - A-IK_(k) + Gy(k + 1) - Gy(k + 1)

= A-l&(k + 1) - A-_Bu(k) - A-1Ke(k) + GC]c(k + 1) + GDu(k + 1)

+GE(k + 1)- Gy(k + 1) (23)

With the definitions as given in Eq. (5), Eq. (23) can be simplified as

_(k) = ,4&(k + 1) + [_u(k) + [4e(k) + GDu(k + 1) + G6(k + 1) - Gy(k + 1)

I [
= _i_(k+l)+[/) GO -G] u(k+l)|+[R G] ]i6(k + 1)y(k+ 1)J

where f4 = -A-1K. The expression for the output y(k) becomes

y(k) = CAi:(k + 1) + (CB + D)u(k) + CCDu(k + 1)-Cay(k + 1)

+ (I + ck) (k) + ca (k + 1)

(24)

(25)

The estimated state vector &(k + 1) can be eliminated by successive substitution of Eq. (24)

into Eq. (25). For example,

i:(k + 1) = /ii:(k + 2) + [_u(k + 1) + Ke(k + 1)

+ GDu(k + 1) + Ge(k + 2) - Gy(k + 2) (26)

This is a backward-time stochastic state space model in the sense that the current state &(k)

is described by the future state i:(k + 1), the current input u(k), and the current residual

e(k). If the original system is stable then the backward-time system will be unstable. To

derive the backward-time ARMAX model, add and subtract the term Gy(k + 1) in Eq. (22),



Equation (25) then becomes

V(k) = CA2i:(k + 2)+ (CB + D)u(k)+ (CA[_ +CGD)u(k + 1)+CAGDu(k + 2)
- Cav(k + 1) - Cav(k + 1) - CAey(k + 2)

+ (I +Ck)e(k)+ (cAR +ca)e(k + 1)+CAas(k + 2) (27')

Repeating the substitution p - 1 times, and making use of the imposed deadbeat condition

for G, i.e.,

(A-'+ac)' =o _>_p (2s),,p=

yields the following backward-time description relating the current and future outputs to

current and future inputs and residuals,

v(k) + CCy(k + 1) + CAay(k+ 2) + ... + CAP-lCy(k +p)

= (D + C[_)u(k)+ (CA[Y + CGD)u(k + 1) +...

+ (cA"-'h + C2'-2GD)u(k + p- 1) + CAP-'GDu(k + p) + e(k) (29)

where e(k) is a colored residual which is related to the white residual of the Kalman filter

¢(k) by the relation

e(k) = (_+ck)e(k)+ (cAre+ca)e(k+11+ ...
-11-(CAl_-lk "1t" C,A'-2C7)e(k -3I-- p- 1)-.1 t- CAPIGe(k ,--I-p) (30)

Define ai, /3i as in Eqs. (11)

ai = CAi-IG ; i = 1, 2, ..., p

fli = CA i-I[3 + CA i-IGD ; i = l, 2, ...,

13o = D + C[3 ; tip=CA p-IGD

p-1 (31)

and_ as

% =

CASk + CAi-'G ; i = 1, 2, ..., p- 1

I + Cf( ; 7p = CAP-'G

Equations (29) and (30) become

(32)

y(k) + a,y(k+l)+ ... +apy(k+p)

= _u(k) + B,u(k + 1) + ... + B,,u(k + p) + e(k) (33)

and

e(k) = "roe(k) + 7xe(k + 1) + ... + 7pe(k + p) (34)



Equation (33) aboveis now referredto asa backward-time ARMAX model. The coefficients

of the backward-time ARMAX model are express(_d in terms of the state space matrices

A, B, C, D, a backward-time observer gain matrix G, and the (forward-time) Kalman filter

gain K. Observe that the deterministic portion of the model described by the coefficients

c_, r, is the same as the backward-time ARX model derived in Eq. (10).

System Identification using a Backward-time ARMAX Model

The problem of system identification using this model structure consists of three basic

steps:

1. Determination of the model coefficients a,, _, and 3'_ from input and output data.

2. Computation of the appropriate Markov parameters from the model coefficients a_, _,,

and "),_.

3. Realization of the system state space model and the corresponding observer gains from

the Markov parameters.

Each of the three steps will be described below. First, it is convenient to rewrite Eq. (33)

in the following form,

[ e(k +-P)I)
+[Tp %-1 "'" 71] [e(k+P +7oe(k)

!
[ e(k+ 11

For a given input-output time history, Eq. (35) can be written as

y = YV+e

e = AW+I
= "roe

u(k)

u(k + p)y(k+ p) j

u(k + p - 1)
y(k + p- 1) j

1)}_(k+ :)

(35)

(36)
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where y, Y, and V are given in Eq. (13), and e, ( e A, W are defined as

e = [e(0) e(1) e(2).., e(g-p)]

( = [((0) ((1) ((2) ..- ((g-p)]

c = [e(o) e(2)...

A = [% ...

W c(p) c(p+l) 6(2)= e(p_ 1) e(p) ... e(g- 1)
• ; '.. :

[ e('l) e(2) ... e(£-p+l)

At this point, the following observation can be made. The ordinary least-squares solution,

which was derived from a purely deterministic consideration as given in Eq. (15), minimizes

the norm of the colored residual e, whereas the true solution minimizes the white residual e.

The least-squares solution, Eq. (15), is the solution of a linear problem, viz., y = YV. This

is in contrast with the parameter estimation problem considered here, namely,

y = YV + AW + 7oe

where in addition to the parameters in Y, neither A, 70 nor the residual in W are known.

This is a non-linear problem since it involves products of the unknowns in AW and Toe. When

no closed-form solution is available, typical solution to this type of problem is iterative in

nature. This approach has been considered previously in the forward-time observer/Kalman

filter identification problem, which produces an improved solution under certain conditions

when the ordinary least-squares solution is not optimal. The readers are referred to Ref.

13 for further details. Examining the structure of Eq. (36) suggests the following iterat-

ing procedure, which starts with the ordinary least-squares solution YLS obtained from the

backward-time ARX approach.

Step 1: Compute the least-squares solution YLs and the resultant least-squares error,

(37)
e LS = y - YLs V

Step 2: Use the initial least-squares error ens as an initial estimate of the white residual

e denoted by eO), i.e., let eO) = eLs, and compute an estimate of backward-time ARMAX

model coefficients in Y and A, denoted by 1_1), At1),

[Y(1), i(l)] = Y(1)u,T(I, (U(1,U_I,) -1 (38)
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where

YO) = [y(O) y(1) y(2).., y(g-2p)]

u(,) = w(,)

s(1)(p) e(1)(p+11 ... e(1)(e-p) ]e(1)(p- 1) c(,)(p) "" e(,)(g_p- 1)
W(1) = : : ... .

L c(1)(1) e(x)(2) ... E(l)(g-2p+ 1)J

The resultant least-squares error, denoted by _(l), is computed from

_(1) = Y(0 - Y(I)V - Ao)W(a ) (39)

Note that the parameters in Y(l) and A(x) do not include the first coefficient of the MA

portion of the model denoted by 70. This coefficient is estimated in step 3.

Step 3: Compute an estimate of the first coefficient of the MA portion of the backward-time

ARMAX model, denoted by

[ ]_1= (40)

At this step, a complete set of the backward-time ARMAX model coefficient estimates is

obtained in 70,0), _l), and A(I).

Step 4: Compute a new estimate of the whitened residual, denoted by e(2), from

-1 (41)c(2) = 70,(1)_(1)

Step 5: Return to step 2 with the new whitened residual e(2) obtained in step 5 to compute

new estimates of Y and A, denoted by Y(2), A(2), and then to step 3 and step 4 to compute

new estimates of %, denoted by 70,(2), and a new whitened residual denoted by e(z).

The above iterating cycle is repeated and the results examined after each cycle to de-

termine a reasonable stopping point. Observe that after each cycle is completed, the data

record to be used in the next cycle is shortened by p points. This is due to the backward-time

nature of the ARMAX model which requires knowledge of p future data points to compute

the current response. This is in contrast with the forward-time model where the initial

condition can be neglected after the transient has decayed. In the backward-time model,
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however,one cannot neglect future data points unless they are known to have decayed to

negligible values. Specifically, given a data record of g points, a backward-time model of

order p can only estimate the first g - p data points. Provided the data record to be used

in the above iterating procedure is sufficiently long, the above shortening of the data record

does not present a problem.

One can compute the Markov parameter sequences of the backward-time observer and

system

Yo = [CG CAG ... CftP-'G] (42)
Y, = [D C/) CA/)... CAP-'/)]

by Eqs. (11) and (16). Furthermore, since

CK = 7o- I (43)
cA'k = -

the following Markov parameter sequence can also be computed

I"I= [CK CAt( ... CAP-' f_] (44)

The backward-time system and observer information is contained in the sequences Yo and Y,,

whereas the noise information is contained in the sequence Yr. The rest of the identification

procedure parallels the previous development with the exception that the identified noise

model is being carried in the sequence YI. Using the sequences defined in Eqs. (42) and

(44), the following combined Markov parameter sequence can be computed,

Y_-[D C[/) a K] CA-X�)... CA-k[�) G K]] (45)

where k is an arbitrary integer which can be as large as desired. The extra Markov parameters

are computed by invoking the prescribed deadbeat condition

CA'[/) C /(]=0 i>p (46)

Application of the Eigensystem Realization Algorithm (ERA) to the sequence defined in Eq.

(45) will produce a realization of the backward-time state space model denoted by

Using the relationship, /) = -A-IB, k = -A-IK, the forward-time system and ob-

server/Kalman filter model represented by

[ABCDGK]

13



canbeeasilycomputed. Note that G is a backward-time observer gain for the system matrix

inverse A -l, K is the Kalman filter gain, and the matrices A, B, C, D form the state space

model of the system being identified.

Experimental Results

The developed method is applied to data obtained from the truss structure shown in

Fig. 1 at NASA Langley Research Center. The L-shaped aluminum truss is oriented such

that its long section is in a vertical direction extending 90 inches. The short section, 20

inches long, is horizontal and is clamped at the free end to a steel rigid plate. The square

cross section is 10 inches by 10 inches. Two cold air jet thrusters, located at the beam tip,

serve as actuators for excitation and control. Each thruster has a maximum thrust of 2.2

lbs. Two servo accelerometers located at a corner of the square cross section provides the

in-plane tip acceleration measurements. In addition, an offset weight of 30 pounds is added

to enhance the dynamic coupling between the two principal axes, and to lower the structure

fundamental frequency. For identification, the truss is excited using random inputs to both

thrusters. The acceleration signals are filtered by a three-pole analog Bessel filter with a

break frequency of 20 Hz. The input-output signals are sampled at 250 Hz and recorded for

system identification. The following examples illustrate the application of system identifi-

cation method developed in this paper using both backward-time ARX and backward-time

ARMAX model approaches. All results are obtained using the System/Observer/Controller

Identification Toolbox 14 developed at NASA Langley Research Center.

Identification Using Back'ward-time ARX Model

An input-output data record of 2000 points is used in the computation. The order of the

ARX model is set to be 10, i.e., p = 10. Equation (15) is used to compute the backward-

time observer Markov parameters from which the Markov parameters of the backward-time

system are computed. Application of ERA produces a backward-time state space model

which is then converted to a forward-time representation. Recall that in the backward-time

model, stable system modes appear unstable, whereas the noise modes remain stable. When

converted to a forward-time representation, the system modes become stable and the noise

modes will become unstable and can be eliminated. In other words, this process is simply

model reduction by modal truncation where the unstable noise modes (in the forward-time

representation) are discarded. The final reduced order model so obtained contains only the

stable system modes that are identified by the method.
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Figures 2a and 2b show the reconstructedresponsesfor both outputs using a 6-order

state spacemodel obtained by this approach. In theseand the following figures, the solid
curvesare the actual responsesthat areusedin the identification procedure,and the dashed

curves representthe reconstruction. The quality of the reconstructionshowshow well the

identified model representsthe actual systemin terms of its ability to reproducethe actual

responseswhendriven by the sameinput time histories. For convenience,the backward-time

identification method presentedin this paper is referredto asbackward-timeOKID, whereas

the method formulated in Ref. 10 is referredto as forward-time OKID. When appropriate,

the type of modelused(ARX or ARMAX model) is alsoindicated. As a baselinecomparison,

the reconstructionplots usingthe 18-thorder modelobtained by the forward OKID method

with the sameset of data are alsoshownin Figs. 3a and 3b.

Identification Using A Backward-time ARMAX Model

Recall that the primary purpose of using the ARMAX model structure is to improve

results obtained from the ARX model alone by modelling the noise dynamics. In order

to show the relative merit of the iterative procedure using the backward-time ARMAX

approach, the data record that was used to obtain the results presented in Figs. 2 and 3

is cut short to 1000 points, resulting in a worsened model obtained by the ARX approach.

This is reflected in its poor ability to reproduce the data as shown in Figures 4a and 4b.

The iterative procedure is then applied to model the noise dynamics and correct the

original model. Figures 5a and 5b show the reconstruction plots after one cycle of iteration.

The results deteriorate but they are explainable since the procedure starts with the assump-

tion that the least-squares residual obtained with the original ARX solution is the same as

the whitened residual of the ARMAX model. Figures 6a and 6b show the reconstruction

plots after two cycles of iteration. The identification results are clearly improved. Further

improvement can be obtained with additional iterating cycles. However, experiences have

shown that later cycles produce little improvement in the results.

As another comparison of the relative performance between the different methods, Ta-

ble 1 shows the identified frequencies and damping factors for each of the respective cases

considered above. In theory, if one uses a backward-time approach then the unstable modes

in the forward-time representation can be attributed to noise and eliminated from the final

models. Comparison with forward-time model results, however, suggests that these modes

could in fact be actual modes, but they are not identified by the backward method due to

factors such as slight non-linearities, non-ideal noise conditions in the test data. Inclusion of

these modes in the model would bring the final state space model order from 6 to 18, which
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is the model usedto generateFigs. 2a and 2b. Table 1 also showsthe orders of the state

space models that are used to compute the reconstruction plots shown previously, and the

norm of the residual using the identified model for each respective method. On the other

hand, a careful examination of the data shows that there is little improvement in the quality

of the reconstruction by including these modes in the final state space models. Taking into

account that the data record is short, this is a case where it is not clear to distinguish a

system mode which is weakly present in the data from a noise mode. The backward-time

approach, however, gives a strong indication about the true system modes. This is evident

from the consistencies in the modes identified from both backward-time and forward-time

approaches.

Concluding Remarks

A system identification procedure using a backward-time approach has been formulated.

A fundamental contribution of this paper is the connection of the state space model to

backward-time finite difference models, which include both a backward-time deterministic

auto-regressive model and a backward-time stochastic autoregressive moving average model.

In the former case, the connection is established in terms of a backward-time observer, and

in the latter case it is established in terms of a backward-time observer and a Kalman fil-

ter. The deterministic formulation is considerably simpler in that it is a linear parameter

estimation problem. The stochastic approach, which requires modelling of the noise dy-

namics, can provide improved results over those obtained from the deterministic approach.

This is accomplished at the expense of an iterating solution to a non-linear parameter es-

timation problem. A key feature of the backward-time models is that stable system modes

appear unstable whereas the noise modes remain stable. This offers an opportunity to dis-

tinguish system modes from noise modes. Since the final state space models contain only

the stronger stable modes, the backward method generally yields models of smaller order

when compared with models obtained from a forward method. It is advantageous to use the

backward method in conjunction with a forward method, so that the effective modes in the

final model can be better evaluated. Since the model structure of the backward-time model

is very different from that of the forward-time model, examination of the results provided

by the two approaches can produce valuable insights into the system being identified.

16



References

1Ljung, L., System Identification: Theory for the User, Prentice-Hall, Inc., Englewood

Cliffs, New Jersey, 1987.

2Hollkamp, J.J. and Batill, S.M., "Automated Parameter Identification and Order Reduc-

tion for Discrete Series Models," AIAA Journal, Vol. 29, No. 1, 1991.

aHollkamp, J.J. and Batill, S.M., "Structural Identification Using Order Overspecified Time-

Series Models," to appear in Journal of Dynamics Systems, Measurement, and Control,

1992.

4Wilkinson, J.H., Rounding Errors in Algebraic Processes, Prentice-Hall, Ioc., Englewood

Cliffs, New Jersey, 1963.

SWilkinson, J.H., The Algebraic Eigenvaluc Problem, Oxford University Press, 1965.

6Grace, A., Laub, A.J., Little, J.N., and Thompson, C., Control System Toolbox: User's

Guide, The MathWorks, Inc., October 1990.

rChen, C.-W., Huang, J.-K., Phan, M., and Juang, J.-N., "Integrated System Identification

and Modal State Estimation for Control of Large Flexible Space Structures," Journal of

Guidance, Control, and Dynamics, Vol. 15, No. 1, pp. 88-95, Jam-Feb. 1992.

SPhan, M., Juang, J.-N., and Longman, R.W., "Identification of Linear Multivariable Sys-

tems from a Single Set of Data by Identification of Observers with Assigned Real Eigen-

values," Proceedings of the AIAA 32nd Structures, Structural Dynamics and Materials

Conference, Baltimore, MD., April, 1991; also to appear in Journal of the Astronautical

Sciences.

9Phan, M., Horta, L.G., Juang, J.-N., and Longman, R.W., "Linear System Identification

Via an Asymptotically Stable Observer," Proceedings of the AIAA Guidance, Navigation

and Control Conference, New Orleans, Louisiana, Aug. 1991; also to appear in Journal of

Optimization Theory and Application. An expanded study is to appear as NASA Technical

Paper 3164, 1992.

l°Juang, J.-N., Phan, M., Horta, L.G., and Longman, R.W.., "Identification of Observer/Kalman

Eilter Markov Parameters: Theory and Experiments," Proceedings of the AIAA Guidance,

Navigation and Control Conference, New Orleans, Louisiana, Aug. 1991, and also to ap-

pear in Journal of Guidance, Control and Dynamics.

11Juang, J.-N., and Pappa, R.S., "An Eigensystem Realization Algorithm for Modal Param-

eter Identification and Model Reduction," Journal of Guidance, Control, and Dynamics,

Vol. 8, No. 5, Sept.-Oct. 1985, pp. 620-627.

17



'2juang, J.-N., Cooper, J.E., and Wright, J.R., "An EigensystemRealization Algorithm

UsingData Correlations(ERA/DC) for Modal ParameterIdentification," Control-Theory

and Advanced Technology, Vol. 4, No. l, 1988, pp. 5-14.

_ZPhan, M., Horta, L.G., Juang, J.-N., and Longman, R.W., "Improvement of Observer/Kalman

Filter Identification (OKID) by Residual Whitening," AIAA Guidance, Navigation and

Control Conference, Hilton Head, South Carolina, Aug. 1992.

14Juang, J.-N., Horta, L.G., and Phan, M.,, "User's Guide for System/Observer/Controller

Identification Toolbox," NASA Technical Memorandum 107566, 1992.

Table 1: Identified frequencies mad damping values of the truss structure.

N=

Mode OKID_f t OKID_b* OKID_b* OKID_b*

ARX ARX ARX ARMAX

2000 pts 2000 pts 1000 pts 1000 pts

Freq.

(Hz.)

1 5.87 5.89 5.92 5.89

2 7.29 7.30 7.33 7.33

3 19.91 18.82 18.54 15.86

4 46.60 46.64 46,26 46.14
5 48.61 48.57 48.61 48.64

6 64.41 64.54 64.15 60.98

7 73.76 73.76 73.43 74.37

8 105.63 105.51 104.01 "99.83

9 110.90 110.97 111.43 113.52

Damp.

(%)

1 0.65 0.61 0.64 0.50

2 0.47 0.29 -0.17 0.89

3 61.52 0.91 0.76 21.73

4 2.08 -2.32 -2.93 -0.85

5 1.53 -0.77 -0.95 -0.63

6 9.33 -0.944 -7.80 -0.56
7 0.74 -1.61 -2.19 -0.55

8 10.24 -10.21 -9.29 -11.27

9 5.12 -5.26 -5.40 -2.11

State Space
Model Order 18 6 4 6

Residual 0.256 0.317 0.673 0.318

t Forward-time OKID,, Backward-time OKID
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Fig. 2a: Actual vs. reconstructed response for the first

output (-- Test, -- Reconstruction): Backward-time

OKID via an ARX model of order p -- 10 with 2000

data points.
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Fig. 2b: Actual vs. reconstructed response for the sec-

ond output (-- Test, - - Reconstruction): Backward-

time OKID via an ARX model of order p -- 10 with

2000 data points.

4

20



80

Pred.

Output
No. 1

40

0

-40

-8O , | , a , I •

0 1 2 3

Time (sec.)

Fig. 3a: Actual vs. reconstructed response for the first out-

put (m Test, - - Reconstruction): Forward OKID via an

ARX model of order p = 10 with 2000 data points.
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Fig. 3b: Actual vs. reconstructed response for the second

output (m Test, - - Reconstruction): Forward OKID via

an ARX model of order p = 10 with 2000 data points.
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Fig. 4a: Actual vs. reconstructed response for the first out-

put (_ Test, - - Reconstruction): Backward OKID via

an ARX model of order p = 10 with 1000 data points.
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Fig. 4b: Actual vs. reconstructed response for the second

output (-- Test, - - Reconstruction): Backward OKID

via an AP,_X model of order p = 10 with 1000 data points.
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Fig. 5a: Actual vs. reconstructed response for the first

output (-- Test, - - Reconstruction): Backward OKID

via an ARMAX model of order p -- 10 with 1000 data

points after one cycle of iteration.
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Fig. 5b: Actual vs. reconstructed response for the second

output (-- Test, - - Reconstruction): Backward OKID

via an AR]VIAX model of order p = 10 with 1000 data

points after one cycle of iteration.
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Fig. 6a: Actual vs. reconstructed response for the first

output (-- Test, -- Reconstruction): Backward OKID

via an ARNIAX model of order p -- 10 with 1000 data

points after two cycles of iterations.
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Fig. 6b: Actual vs. reconstructed response for the second

output (-- Test, - - Reconstruction): Backward OKID

via an ARMAX model of order p -- 10 with 1000 data

points after two cycles of iterations.
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